431 research outputs found

    Scheduling periodic jobs using imprecise results

    Get PDF
    One approach to avoid timing faults in hard, real-time systems is to make available intermediate, imprecise results produced by real-time processes. When a result of the desired quality cannot be produced in time, an imprecise result of acceptable quality produced before the deadline can be used. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. Since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result, the amount of processor time assigned to any task in a valid schedule can be less than the amount of time required to complete the task. A meaningful formulation of the scheduling problem must take into account the overall quality of the results. Depending on the different types of undesirable effects caused by errors, jobs are classified as type N or type C. For type N jobs, the effects of errors in results produced in different periods are not cumulative. A reasonable performance measure is the average error over all jobs. Three heuristic algorithms that lead to feasible schedules with small average errors are described. For type C jobs, the undesirable effects of errors produced in different periods are cumulative. Schedulability criteria of type C jobs are discussed

    Analyzing service usage patterns: Methodology and simulation

    Get PDF

    Guest editorial: Advances in RFID technology

    Get PDF

    Towards Semantic Service Request of Web Service Composition

    Get PDF

    Effect of Lower Extremity Bypass Surgery on Inflammatory Reaction and Endothelial Dysfunction in Type 2 Diabetic Patients

    Get PDF
    Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia and dyslipidemia. The abnormalities in nutrient metabolism and elevated inflammatory mediators resulting from DM lead to impairment of wound healing and vulnerability to infection and foot ulcers. Diabetic lower limb ischemia often leads to limb necrosis. Lower extremity bypass surgery (LEBS) is indicated to prevent limb loss in patients with critical leg ischemia. This study investigated the alteration of inflammatory and endothelium dysfunction markers before and after LEBS in DM patients. Twenty one type 2 DM patients with LEBS were included. Blood was drawn before and at 1 day and 7 days after surgery in the patients. Plasma soluble cellular adhesion molecule levels and blood leukocyte integrin expressions were measured. Also, plasma concentrations of endothelin-1 and nitric oxide were analyzed to evaluate the vascular endothelial function. The results showed that there were no significant differences in plasma cellular adhesion molecules, endothelin-1 and nitric oxide levels, nor did any differences in leukocyte integrin expressions before and after the operation. These results suggest that the efficacy of LEBS on alleviating inflammatory reaction and improving endothelial function in DM patients was not obvious

    Comparison of the Offspring Sex Ratio Between Cleavage Stage Embryo Transfer and Blastocyst Transfer

    Get PDF
    SummaryObjectiveTo compare the sex ratio of offspring born after cleavage stage embryo transfer and blastocyst transfer.Materials and MethodsIn this retrospective study of embryo transfer (ET), we included 473 offspring from 446 deliveries during the period January 2002 to December 2007. Statistical analysis was performed on the sex ratio of offspring resulting from day 3 cleavage stage embryo transfer and from sequential blastocyst culture transfer.ResultsIn total, 446 patient deliveries were included in this analysis. There were 251 singleton pregnancies, 109 twin pregnancies, and four triplet pregnancies. The total number of offspring was 473, of which 118 resulted from day 3 ETs, and 355 resulted from blastocyst ETs. At our center, the influence on the sex ratio of cleavage stage ET and blastocyst-stage ET showed a bias towards males in both cases. The overall female to male ratio for offspring resulting from day 3 ETs was not significantly higher than the same ratio for offspring resulting from blastocyst ETs (p = 0.24; odds ratio, 0.762). The female to male ratio for either singleton births or multiple deliveries was also not significantly different between day 3 ETs and blastocyst ETs.ConclusionThe sex ratio was influenced by cleavage stage ET and blastocyst-stage ET. In both cases, there was a bias towards males. In addition, when blastocyst ET was compared with day 3 ET, there was no further increase in the percentage of male offspring

    Neuromorphic Computing with Deeply Scaled Ferroelectric FinFET in Presence of Process Variation, Device Aging and Flicker Noise

    Full text link
    This paper reports a comprehensive study on the applicability of ultra-scaled ferroelectric FinFETs with 6 nm thick hafnium zirconium oxide layer for neuromorphic computing in the presence of process variation, flicker noise, and device aging. An intricate study has been conducted about the impact of such variations on the inference accuracy of pre-trained neural networks consisting of analog, quaternary (2-bit/cell) and binary synapse. A pre-trained neural network with 97.5% inference accuracy on the MNIST dataset has been adopted as the baseline. Process variation, flicker noise, and device aging characterization have been performed and a statistical model has been developed to capture all these effects during neural network simulation. Extrapolated retention above 10 years have been achieved for binary read-out procedure. We have demonstrated that the impact of (1) retention degradation due to the oxide thickness scaling, (2) process variation, and (3) flicker noise can be abated in ferroelectric FinFET based binary neural networks, which exhibits superior performance over quaternary and analog neural network, amidst all variations. The performance of a neural network is the result of coalesced performance of device, architecture and algorithm. This research corroborates the applicability of deeply scaled ferroelectric FinFETs for non-von Neumann computing with proper combination of architecture and algorithm
    corecore